jueves, 23 de junio de 2011

"Sistema de Numeración"

Liceo Cristiano Rev. Juan Bueno San Benito
Laura Najarro 11 a
INTRODUCCION
Mediante este trabajo de investigacion de conceptos del sistema de numeracion se desarrollara su definicion y tambien en las ramas en las que se divide con sus propios conceptos

DEFINICION

Un sistema de numeración es un conjunto de símbolos y reglas de generación que permiten construir todos los números válidos.

Un sistema de numeración puede representarse como

\mathcal{N} = (S, \mathcal{R})

donde:

  • \mathcal{N} es el sistema de numeración considerado (p.ej. decimal, binario, etc.).
  • S\, es el conjunto de símbolos permitidos en el sistema. En el caso del sistema decimal son {0,1,...9}; en el binario son {0,1}; en el octal son {0,1,...7}; en el hexadecimal son {0,1,...9,A,B,C,D,E,F}.
  • \mathcal{R} son las reglas que nos indican qué números son válidos en el sistema, y cuáles no. En un sistema de numeración posicional las reglas son bastante simples, mientras que la numeración romana requiere reglas algo más elaboradas.

Estas reglas son diferentes para cada sistema de numeración considerado, pero una regla común a todos es que para construir números válidos en un sistema de numeración determinado sólo se pueden utilizar los símbolos permitidos en ese sistema.

Para indicar en qué sistema de numeración se representa una cantidad se añade como subíndice a la derecha el número de símbolos que se pueden representar en dicho sistema.

CLASIFICACION:

Los sistemas de numeración pueden clasificarse en dos grandes grupos: posicionales y no-posicionales:

  • En los sistemas no-posicionales los dígitos tienen el valor del símbolo utilizado, que no depende de la posición (columna) que ocupan en el número.
  • En los sistemas de numeración ponderados o posicionales el valor de un dígito depende tanto del símbolo utilizado, como de la posición que ése símbolo ocupa en el número.

Por ejemplo, el sistema de numeración egipcio es no posicional, en cambio el babilónico es posicional. Las lenguas naturales poseen sistemas de numeración posicionales basados en base 10 ó 20, a veces con subsistemas de cinco elementos. Además, en algunas pocas lenguas los numerales básicos a partir de cuatro tienen nombres basados en numerales más pequeños.

Ejemplo en el sistema decimal

En el sistema decimal los símbolos válidos para construir números son {0,1,...9} (0 hasta 9, ambos incluidos), por tanto la base (el número de símbolos válidos en el sistema) es diez

En la figura inferior podemos ver el teorema fundamental de la numeración aplicado al sistema decimal.

\begin{matrix} \!\!\!\!\!\!N=d_n \ldots d_1 d_0,  d_{-1} \ldots  d_{-k}& =&\\& \\ d_n\cdot 10^n+\ldots+d_1\cdot 10^1+d_0\cdot 10^0 , +d_{-1}\cdot 10^{-1}+\ldots+d_{-k}\cdot10^{-k}& =& \end{matrix}



Ejemplo en el sistema binario

Tomemos ahora el sistema binario o de base 2. En este sistema los dígitos válidos son {0,1}, y dos unidades forman una unidad de orden superior.

En la figura inferior podemos ver el teorema fundamental de la numeración aplicado al sistema binario.

\begin{matrix} \!\!\!\!\!\!N=d_n \ldots d_1 d_0,  d_{-1} \ldots  d_{-k}& =&\\& \\ d_n\cdot 2^n+\ldots+d_1\cdot 2^1+d_0\cdot 2^0 , +d_{-1}\cdot 2^{-1}+\ldots+d_{-k}\cdot 2^{-k}& =& \end{matrix}

N=\sum_{i=-k}^n d_i\cdot 2^i



Sistema de numeración octal

El sistema de numeración octal es también muy usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple. El sistema octal usa 8 dígitos (0, 1, 2, 3, 4, 5, 6, 7) y tienen el mismo valor que en el sistema de numeración decimal.

El teorema fundamental aplicado al sistema octal sería el siguiente:

\begin{matrix} \!\!\!\!\!\!N=d_n \ldots d_1 d_0,  d_{-1} \ldots  d_{-k}& =&\\& \\ d_n\cdot 8^n+\ldots+d_1\cdot 8^1+d_0\cdot 8^0 , +d_{-1}\cdot 8^{-1}+\ldots+d_{-k}\cdot8^{-k}& =& \end{matrix}



N=\sum_{i=-k}^n d_i\cdot 8^i

Sistema de numeración hexadecimal

quedando multiplicado por una cierta potencia de la base del sistema, que en este caso es 16. Por ejemplo: 3E0,A(16) = 3 \cdot 16^2 + E\cdot16^1 + 0\cdot16^0 + A\cdot16^{-1} = 3\cdot256 + 14\cdot16 + 0\cdot1 + 10\cdot0,0625 = 992,625\,\!.

El sistema de numeración hexadecimal, de base 16, utiliza 16 símbolos. Es común abreviar hexadecimal como hex aunque hex significa base seis. Dado que el sistema usual de numeración es de base decimal y, por ello, sólo se dispone de diez dígitos, se adoptó la convención de usar las seis primeras letras del alfabeto latino para suplir los dígitos que nos faltan: A = 10, B = 11, C = 12, D = 13, E = 14 y F = 15. Como en cualquier sistema de numeración posicional, el valor numérico de cada dígito es alterado dependiendo de su posición en la cadena de dígitos,


N=\sum_{i=-k}^n d_i\cdot 10^i

Tabla de conversión entre decimal, binario, hexadecimal, octal, BCD, Exceso 3 y Gray o Reflejado

DecimalBinarioHexadecimalOctalBCDExceso 3Gray o Reflejado
0000000000000110000
1000111000101000001
2001022001001010011
3001133001101100010
4010044010001110110
5010155010110000111
6011066011010010101
7011177011110100100
81000810100010111100
91001911100111001101
101010A120001 00001111
111011B130001 00011110
121100C140001 00101010
131101D150001 00111011
141110E160001 01001001
151111F170001 01011000

1 comentario:

  1. Por si les resulta de utilidad les dejo un gadget que realiza los cambios automáticamente, para que puedan revisar si sus cálculos son correctos:
    http://informatica-pfont.blogspot.com.es/2011/02/cambio-de-base-de-numeracion.html

    ResponderEliminar